Bf Bruchköbel, Modernisierung und barrierefreier Ausbau der Verkehrsstation Km 21,6+61 bis 21,8+89, Strecke 3742 Friedberg - Hanau

Unterlage 17 – Nachweis ausreichender Bahnsteig- und Zugangsbreiten

Unterlage	Bezeichnung	
17.1	Nachweis Bahnsteigbreite	
17.2	Nachweis Bahnsteigfläche	
17.3	Nachweis Treppenbreite	

Nachweis ausreichender Bahnsteig- und Zugangsbreiten

Vorhaben:

Bf Bruchköbel, Modernisierung und barrierefreier Ausbau der Verkehrsstation Km 21,6+61 bis 21,8+89, Strecke 3742 Friedberg - Hanau

Mindestbahnsteigbreite gemäß Ril 813.0201A04

Mindestbreite des Bahnsteiges im Bereich ohne Hindernisse

- die Mindesbreite muss dem größeren der nachfolgenden Werte entsprechen

a) b_{min.o}=

Breite des Gefahrenbereiches bzw. der frei zu haltenden Fläche auf

dem Bahnsteig b_S zuzüglich zweier Gehspurbreiten (je 80 cm)

oder

b) b_{min.o}=

2,50 m für Außenbahnsteig

oder

c) b_{min,o}=

3,30 m für Mittelbahnsteig hier nicht relevant

zu a) b_s=

0,83 m

 $(= 2,50 - a_B)$ $a_B = 1,67 m$

bzw.

0,8345 m

am Bahnsteiganfang von Bstg. 1

 $b_{min} =$

2,43 m

(=0,83+0,8+0,8)

bzw.

2,4345 m

am Bahnsteiganfang von Bstg. 1

Maßgebend für die Mindestbreite für den der Außenbahnsteig ist somit b)

b _{min,o} =	2,50 m
111111,0	

Bf Bruchköbel, Modernisierung und barrierefreier Ausbau der Verkehrsstation Km 21,6+61 bis 21,8+89, Strecke 3742 Friedberg - Hanau

DB Unterlage 17.2

Ermittlung der notwendigen Bahnsteigfläche nach Reisendenaufkommen

0. Eingangsdaten

Reisendenaufkommen Q

Q= 1.028 P/24h

(Prognose)

 $Q_A=Q_E=Q/2$

 $Q_A = Q_E =$

514 P/24h

(Prognose)

1. bemessungsrelevante Reisendenzahl:

nach Ril 813.0102A02

a) Ermittlung der Stundenbelastung

Q _H =	Q _{24*} 0,6*n _b)
G H	5*n	
Q_h	[P/h]	5

Q_h [P/h] Stundenbelastung eines Bahnsteiges

Q₂₄ [P/24h]

Tagesbelastung der Personenverkehrsanlage (zwischen 0 und 24 Uhr)

n [-] Anzahl der betrieblich genutzten Bahnsteigkanten n_b [-] Anzahl der Bahnsteigkanten des Bahnsteigs

Grunddaten:

Hausbahnsteig	<u>Außenbahnsteig</u>		
$Q_{24} = 1.028$	P/24h	$Q_{24} = 1.028$	P/24h
n= 2		n= 2	
n _b = 1		n _b = 1	
Q _h = 62	P/h	Q _h = 62	P/h

b) Ermittlung bemessungsrelevante Reisendenzahl für Lastfall Normalverkehr

$$Q_{15} = 1.3 * Q_h / 4$$

$$Q_{15} = 20$$

P/15min

 $Q_{15} = 20$

P/15min

c) Ermittlung bemessungsrelevante Reisendenzahl für Lastfall Spitzenverkehr

$$Q_2 = 1,38 * Q_{15} / 7,5$$

$$Q_2 =$$

4 P/2min

 $Q_2 =$

4 P/2min

2. mittlere Bahnsteigbreite

nach Ril 813.0201A05

a) Normalverkehr

Grunddaten			
Q _A = 20	[P/15min]	$Q_A =$	20
$I_{\rm B} = 140$	m	I _B =	140
$d_{V} = 0.5$	(Nahverkehr)	$d_V =$	0,5
$Q_E = 20$	[P/15min]	$Q_E =$	20
$d_{AS} = 1,5$	(Nahverkehr)	$d_{AS} =$	1,5
$A_{AS} = 0$	[m²]	A _{AS} =	0
$b_c = 2.50 \text{ m} - 100 \text{ m}$	a_{p} [m] $(v \le 160 \text{km/h})$	b _c =	0.83

a_B = 1,670

<u>Hausbahnsteig</u>

<u>Außenbahnsteig</u>

 $n_B = 1$ $b_S = 0.8345$

 $b_S = 0.830$ r

Berechnung

D _{mittel} = 1,22	m	D _{mittel} = 1,	22 m
b) Spitzenverke	<u>hr</u>		
Grunddaten			
Q _A =	4 [P/2min]	$Q_A =$	4
$d_V =$	1 (Nahverkehr)	$d_V =$	1
Q _E =	4 [P/2min]	$Q_E =$	4
d _{AS} =	2,5 (Nahverkehr)	d _{AS} =	2,5
A _{AS} =	0 [m²]	A _{AS} =	0

Berechnung Hausbahnsteig

 $b_{mittel} = 0.88$ m

 $A_{AS} = 0$ Berechnung Außenbahnsteig $b_{mittel} = 0,88 \text{ m}$

zum Nachweis der mittleren Bahnsteigbreite am Hausbahnsteig wurde der Wert vom Bahnsteiganfang bs=0,8345 m zugrunde gelegt. Für den Bereich des Bahnsteiges 1 der in der Geraden liegt gilt der Nachweis vom Außenbahnsteig 2

Vorhaben:

Bf Bruchköbel, Modernisierung und barrierefreier Ausbau der Verkehrsstation Km 21,6+61 bis 21,8+89, Strecke 3742 Friedberg - Hanau

Ermittlung der nutzbaren Treppenbreite nach Reisendenaufkommen

0. Eingangsdaten

Reisendenaufkommen Q

Q=

1.028 P/24h

(Prognose)

 $Q_A = Q_E = Q/2$

 $Q_A = Q_F =$

514 P/24h

(Prognose)

1. bemessungsrelevante Reisendenzahl:

nach Ril 813.0102A02

a) Ermittlung der Stundenbelastung

 $Q_h = Q_{24} * 0.6 * n_b / (5*n)$

 Q_h

[P/h]

Stundenbelastung eines Bahnsteiges

 Q_{24}

[P/24h]

Tagesbelastung der Personenverkehrsanlage (zwischen 0 und 24 Uhr)

n

[-]

Anzahl der betrieblich genutzten Bahnsteigkanten der PVA

 n_b

[-]

Anzahl der Bahnsteigkanten des Bahnsteigs

Grunddaten:

Hausbahnseig (Bstg. 1)

Außenbahnsteig (Bstg. 2)

 $Q_{24} = 1.028$ n=2

 $n_b = 1$

Q₂₄= 1.028 P/24h n=2

 $n_b = 1$

 $Q_{h} = 62$

P/h

P/24h

 $Q_{h} = 62$

P/h

b) Ermittlung bemessungsrelevante Reisendenzahl für Lastfall Normalverkehr

$$Q_{15} = 1.3 * Q_h / 4$$

 $Q_{15} = 20$

P/15min

 $Q_{15} = 20$

P/15min

c) Ermittlung bemessungsrelevante Reisendenzahl für Lastfall Spitzenverkehr

$$Q_2 = 1.38 * Q_{15} / 7.5$$

4 P/2min

 $Q_2 =$

4 P/2min

[m/s]

[m]

2. Mindestbreite der Treppen

nach Ril 813.0201A05

a) Normalverkehr

$$b_z = \frac{Q_{A,1}}{V_1 * d_1 *}$$

Grunddaten

$Q_A = 20$	[P/15min]
$v_1 = 0.6$	[m/s] (Treppe abwärts)

(Nahverkehr)

 $Q_A = 20$ $v_1 = 0.6$

 $d_1 = 0.8$

 $d_1 = 0.8$ t = 150

(Regel [s] [m](Gehspur)

t = 150[s] q = 0.8[m]

g = 0.8 $b_{Verl} = 0$

[m]

 $b_{Verl} = 0$

 $b_S = 2,50 \text{ m} - a_B \text{ [m]} \text{ (v<=160km/h)}$

 $b_S = 2,50 \text{ m} - a_B$

Vorhaben:

Bf Bruchköbel, Modernisierung und barrierefreier Ausbau der Verkehrsstation Km 21,6+61 bis 21,8+89, Strecke 3742 Friedberg - Hanau

Berechnung

$$b_{z,1} = 1,08$$
 m

$$b_{z,1} = 1,08$$
 m

b) Spitzenverkehr

$$b_{z,2} = \frac{Q_{A,2}}{v_2 * d_2 * t} + g + b_{Verl}$$

Grunddaten

$Q_A =$	4	[P/15	min]	$Q_A =$	4	
v ₂ =	0,6	[m/s]	(Treppe abwärts)	v ₂ =	0,6	[m/s]
$d_2 =$	1,2	(Nahv	rerkehr)	$d_2 =$	1,2	
t =	150	[s]	(Regel	t =	150	[s]
g =	0,8	[m]	(Gehspur)	g =	0,8	[m]
$b_{Verl} =$	0	[m]		$b_{Verl} =$	0	[m]
$b_s =$	2,50 m - a _B	[m]	$(v \le 160 \text{km/h})$	$b_s =$	2,50 n	n - a _R

Berechnung

$b_{z,1} = 0.84$	m

$$b_{z,1} = 0.84$$
 m

Für die gesamte Maßnahme wurden Treppen mit einer Breite von 2,40 m > 1,08 m gewählt.